Multiple moving cracks in an orthotropic strip sandwiched between two piezoelectric layers

Authors

  • Mahsa Nourazar Faculty of Engineering, University of Zanjan, P. O. Box 45195-313, Zanjan, Iran
  • mojtaba ayatollahi Faculty of Engineering, University of Zanjan, P. O. Box 45195-313, Zanjan, Iran
Abstract:

In this paper, the solution of a moving Volterra-type screw dislocation in an orthotropic layer, bonded between two piezoelectric layers is obtained using complex Fourier transform. The dislocation solution is then employed as strain nuclei to derive singular integral equations for a medium weakened by multiple moving cracks. These equations, which are classified as, Cauchy singular equations, are then solved numerically for dislocation density functions an the numerical results of the dynamic stress intensity and strain energy density factors are obtained. Finally, the effects of the material properties, geometrical parameters and the speed of the crack propagating on the stress intensity factors and strain energy density factor are investigated. It is shown from theses results that the effect of the crack propagation speed can be highly significant.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

multiple moving cracks in an orthotropic strip sandwiched between two piezoelectric layers

in this paper, the solution of a moving volterra-type screw dislocation in an orthotropic layer, bonded between two piezoelectric layers is obtained using complex fourier transform. the dislocation solution is then employed as strain nuclei to derive singular integral equations for a medium weakened by multiple moving cracks. these equations, which are classified as, cauchy singular equations, ...

full text

Multiple Moving Cracks in an Orthotropic Strip Sandwiched between Two Piezoelectric Layers

Dynamic fracture mechanics of layered materials has been gaining lots of attentions among the researchers where the layered materials are extensively used in various products and devices to improve structural performance such as strength and durability. The influence of the crack moving speed on the the stress intensity factors was a popular subject in classical elastodynamics. Among the models...

full text

Multiple Moving Cracks in a Nonhomogeneous Orthotropic Strip

The problem of several finite moving cracks in a functionally graded material is solved by dislocation technique under the condition of anti-plane deformation. By using the Fourier transform the stress fields are obtained for a functionally graded strip containing a screw dislocation. The stress components reveal the familiar Cauchy singularity at the location of dislocation. The solution is em...

full text

Fracture Analysis of a FGM Strip Containing Multiple Interface Cracks Sandwiched between Two Homogeneous Layers

A FGM layer sandwiched between two isotropic layers weakened by several interface cracks under antiplane loading is studied. This paper examines the modelling of cracks by distribution of strain nuclei along crack lines. In this investigation, the Volterra-type screw dislocation employed between FGM and an elastic layer. To solve the dislocation problem, the complex Fourier transform is applied...

full text

Fracture Analysis of a FGM Strip Containing Multiple Interface Cracks Sandwiched Between Two Homogeneous Layers

A FGM layer sandwiched between two isotropic layers weakened by several interface cracks under antiplane loading is studied. This paper examines the modelling of cracks by distribution of strain nuclei along crack lines. In this investigation, the Volterra-type screw dislocation employed between FGM and an elastic layer. To solve the dislocation problem, the complex Fourier transform is applied...

full text

multiple moving cracks in a nonhomogeneous orthotropic strip

the problem of several finite moving cracks in a functionally graded material is solved by dislocation technique under the condition of anti-plane deformation. by using the fourier transform the stress fields are obtained for a functionallygraded strip containing a screw dislocation. the stress components reveal the familiar cauchy singularity at thelocation of dislocation. the solution is empl...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 16  issue 1

pages  97- 113

publication date 2015-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023